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Abstract

In this paper the development of a closed-form, easy-to-use design formula for optimal control performance of bi-tuned
mass dampers is described. First, optimal parameters of bi-tuned mass dampers are investigated by a multi-objective
optimization technique for which two performance measures, termed as nominal and robust performance indices, are
defined in terms of the maximum value of the frequency response function of the damped structure in its original design
condition and that in perturbed conditions, respectively. Since the ratio of the mass of the bi-tuned mass dampers to that of
the structure affects the control performance significantly, the multi-objective optimization process is repeated for various
mass ratios. For each configuration, the plot of Pareto-optimal solutions in the objective function space exhibited a
bifurcation point which could be used to improve the nominal or robust performances. Since the robust performance can
be greatly improved up to the bifurcation point without a significant loss of the nominal performance, these bifurcation
points are selected for the development of an optimal design formula. Simple closed-form expressions for such optimal
tuning frequencies and damping ratios of bi-tuned mass dampers are then derived using a nonlinear curve-fitting technique.
To verify the performance of the bi-tuned mass dampers system obtained by the proposed optimal design formula,
illustrative examples are presented for a single- and bi-tuned mass dampers systems using the full-order model of the
building structure. The nominal and robust performances of the optimal designs are examined through a parametric study
on characteristics of ground motions. The results of a stochastic dynamic analysis demonstrate that the proposed design
formula guarantees both nominal and robust performances of bi-tuned mass dampers systems in controlling the responses
of the building structures under seismic excitations.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that a tuned mass damper consisting of a mass, a spring and a damper is quite effective for
vibration control of civil structures in many practical situations due to its simplicity and high level of reliability
[1,2]. Remarkable advances have been made in optimal design formulas for single-tuned mass damper systems
under various types of excitations [2-8]. For example, Den Hartog [2] demonstrated that the frequency
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response function of a harmonically excited structure with a single-tuned mass damper always passes two fixed
points regardless of the damping ratio of the single-tuned mass damper and derived simple expressions for
optimal parameters of the single-tuned mass damper in an analytical manner. However, the single-tuned mass
damper system has a main drawback—its performance may worsen due to mis-tuned frequency or off-optimal
damping [9]. A possible remedy to this is using more than one tuned mass damper with different dynamic
characteristics. Accordingly, many researchers have studied how to determine the distribution of frequencies
and damping ratios of the multiple-tuned mass dampers under various loading conditions, and suggested the
corresponding optimal design formulas [9—15]. Among various types of multiple mass dampers, this paper
focuses on two small tuned mass dampers, termed as bi-tuned mass dampers. This bi-tuned mass dampers
system does not guarantee the existence of the fixed points that all the frequency response functions pass
regardless of damping ratios of tuned mass dampers. Hence, a closed-form expression for optimal parameters
of bi-tuned mass dampers cannot be obtained through an analytical approach such as Den Hartog’s. As an
attempt to help designers obtain optimal control performance in both original and off-tuning conditions using
bi-tuned mass dampers systems, this paper derives a closed-form, easy-to-use design formula of optimal
frequencies and damping ratios.

In order to achieve satisfactory performance of a bi-tuned mass dampers system, we first introduce two
performance measures to quantify the effectiveness and robustness of the bi-tuned mass dampers in the
original and off-tuning conditions, respectively. First, the ‘““nominal” performance index is defined in terms of
the peak response of the original structure subject to harmonic excitations. Second, the “robust” performance
index is defined in terms of the peak response when the structure experiences perturbation in its dynamic
properties due to normal wear or damage, or incomplete description of a real structure by a numerical model.
By describing the performances as two different objective functions during the optimization process, the
structure with the optimally designed bi-tuned mass dampers is expected to maintain excellent performance in
its original condition with robustness against off-tuning events.

Since these two performances are both important and a change in the design does not necessarily improve or
worsen both performances simultaneously, it is necessary to use an efficient optimization method to find
parameters that reduce the peak responses both in original and perturbed conditions. A conventional
approach is to use weighting factors to combine the multiple objectives into a single objective function.
In the absence of further information or any preference on the multiple objectives, however, the single-
objective optimization approach based on arbitrary weights does not guarantee a compromising solution
for these multiple objectives. Therefore, we adopt a multi-objective optimization approach [16,17] to
maximize the nominal and robust performances simultancously without prescribing the weighting factors
arbitrarily.

Since improvement in one objective leads to degradation in at least one of the remaining objective functions,
the presence of multiple objectives in a problem, in principle, produces a set of optimal solutions, often called
Pareto-optimal solutions. Accordingly, the multi-objective optimization approach guides the multi-point
searching process toward a uniformly spread-out Pareto-optimal front in multi-dimensional objective space.
Thus, the distribution of the Pareto-optimal solutions well describes the relative importance between the
multiple objectives, or how the multiple objectives are competent with each other in the objective space. This
descriptive information on the multiple objectives enables us to obtain a reasonable solution that achieves at
least similar level of nominal performance to single-tuned mass damper and as much robust performance as
possible. The ratio of the total mass of the bi-tuned mass dampers to that of the structure affects the control
performance of the damped structural system. Thus, we repeat the multi-objective optimization process as the
mass ratio of the bi-tuned mass dampers is varied, and a set of reasonable optimal solutions are selected for
the given range of mass ratios. Finally, a nonlinear curve fitting scheme is utilized to derive a closed-form
optimal design formula of bi-tuned mass dampers as a function of the mass ratio.

In order to demonstrate the performance of the proposed design formula of the bi-tuned mass dampers, we
apply the optimally designed bi-tuned mass dampers system to a full-order model of the structural system, and
its nominal and robust performances are investigated for a wide range of parameters representing the
intensity, dominant frequency and bandwidth of ground motion excitations. It is also compared to the
performances of an single-tuned mass damper designed by Den Hartog design formula which is the most
commonly used design formula of the single-tuned mass damper in its practical applications.
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2. Nominal and robust performance measures of bi-tuned mass dampers system
2.1. Structural model of bi-tuned mass dampers system

Consider a primary structure with a bi-tuned mass damper system installed. The primary structure is
modeled as a single-degree-of-freedom oscillator that represents the structural mode to be controlled. In
general, the first modal frequency is selected as the target frequency to be controlled since the contribution of
the first modal behavior to the global response is dominant in most civil structures. Hence, the mass (),
damping coefficient (¢,) and stiffness (k) of the single-degree-of-freedom model of the primary structure
correspond to those of the first mode of the structure. Each of the two tuned mass dampers is also modeled as
an single-degree-of-freedom system, and their dynamic properties are characterized by mass m;, damping
coefficient ¢; and stiffness k; (j = 1,2). In this paper, we assume that the masses of the two tuned mass dampers
are the same, i.e., m; = m,. When the two tuned mass dampers are attached to the primary structure as shown
in Fig. 1, the equation of motion is

MXi(f) + Cx(1) + Kx(¢) = (1), (1)

where X(7), x(f) and x(z), respectively, denote (3 x 1) dimensional vectors of accelerations, velocities and
displacements of the structural system; the vector x(¢) consists of the displacements of the structure and the
two tuned mass dampers relative to the base, i.e., x(r) = [x,(2), x1(2), x2(£)]"; M, C, K and f(¢), respectively,
denote the mass, damping and stiffness matrices and the force vector. More specifically,

mg 0 0
M=|0 m 0], (2a)
0 0 m
cGt+cep+e —c —o
C= - o 0 |, (2b)
—Cr 0 )

ki+ki+ky —ki —k
K= —ky ky 0 1, (2¢)

bi-TMD

Fig. 1. Structural model of a structure with bi-tuned mass dampers (bi-TMD).
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—my
f(r) = —le(t) = | —m | w(?), (2d)
—my
in which w(¢) is the acceleration of the base-excitation.

In order to obtain the frequency response function of the structural response with respect to the excitation
w(?), we describe the equation of motion in Eq. (1) by a state-space representation [18]

(1) = Az(t) + Bw(?), 3)
where z(¢) is the state vector; A is the system matrix; B is the input matrix; and more specifically,
x(7)
(1) = l"‘(f)l , (42)
A 0 ! 4b
S |-M'Kk -Mm'c)’ (46)
0
B=1_1 1 ; (4¢)

where I is the identity matrix and 1 is a vector of ones. A generic output vector y(¢) is often described in terms
of z(¢) and w(?), i.c.,

y(1) = Cyz(t) + Dyw(?), 5)

in which Cy and Dy are the output matrices. In the case where the displacement of the primary structure, x,(f)
is of interest, for example, Cy =[1 0 ... 0] and Dy = [0].
According to the theory of linear system [18], the frequency response function is given by

hy(w) = Cy(iw -1 — A)"'B + Dy, (6)

where w is the circular frequency argument.

2.2. Nominal and robust performance indices

This study aims to develop a closed-form optimal design formula for bi-tuned mass dampers system that
guarantees not only effective performance in original (or exact tuning) condition but also robust performance
against a certain range of possible errors or mis-tuning in structural parameters used for optimization. For this
purpose, we first introduce two performance measures for a bi-tuned mass dampers system, i.e., “‘nominal”
and “robust” performance indices. The nominal performance index of a bi-tuned mass dampers, Jy quantifies
the effectiveness of the bi-tuned mass dampers performance when it is precisely tuned to the primary structure.
Thus, Jy is defined as the peak value of the frequency response function of the original structure with
a bi-tuned mass dampers system (i.e., when its actual frequency is exactly the same as the tuning frequency of
the bi-tuned mass dampers) over a range of exciting frequency, i.e.,

Jn = max |hy(w)l, (7
weR

where Q denotes a range of possible exciting frequency w.

Along with the definition of the nominal performance index, the robust performance index, J is defined by
the maximum value of the frequency response function of the perturbed structure with a bi-tuned mass
dampers system. The perturbed condition of the structure may arise from changes in dynamic properties of the
main structure due to normal wear or damage, or incomplete description of a real structure by a numerical
model. The robust performance index thus accounts for performance degradation of the bi-tuned mass
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dampers under the presence of uncertain structural properties and can be expressed as

Jr = max(max [hs(o, 5k, @®)
where the frequency perturbation of the structure is modeled by stiffness variation of the primary structure,
ok so that the influence of possible variations of other properties such as structural mass or damping on the
frequency perturbation are reflected indirectly; A4 (w, dk;) is the perturbed frequency response function due to
the stiffness variation ok,; and ¥ is a range of possible stiffness variations. For the given stiffness variation, the
peak value of the perturbed frequency response function is at first calculated over a range of exciting frequency
w, and the robust performance index is calculated as the maximum value of the peak frequency response
function over the range of stiffness variations Jk,;. Therefore, this robust performance index always
corresponds to the maximum frequency response of the primary structure even if the maximum frequency
response does not occur at the maximum perturbation.

The smaller value of performance indices indicates better performance of the bi-tuned mass dampers.
Hence, the bi-tuned mass dampers system with the smallest value of Jy is most effective in reducing the
maximum displacement of the original structure, whereas the bi-tuned mass dampers system with the smallest
value of J is most effective in reducing the possible maximum displacement of the perturbed structure within
a certain range of frequency perturbations.

3. Multi-objective optimization approach

The main goal of the proposed optimization approach is to find a bi-tuned mass dampers system that
guarantees both effective and robust performances by optimization. Conventional optimization approaches
often combine such multiple objective functions into a single-objective function by prescribing arbitrary
importance weights. However, these two objectives do not necessarily diminish at the same time and the
relative importance of different objectives is not known a priori in most cases. Therefore, we hereby adopt a
weighting-free optimization approach for simultaneous minimization of the multiple objectives. Thus, the
optimization problem is formulated using a vector form of objective function such that

In
minimize
x={w,{,02,0} Jr

subject to 0k, <k, <k}, weQ, 9)

where w; and {; (j = 1,2) correspond to the natural frequencies and damping ratios of the tuned mass dampers
to be determined; and Jk; and 0k, are the expected bounds on the perturbed frequency of the structure.

The presence of multiple objectives in a problem, in principle, produces a set of optimal solutions, often
called as Pareto-optimal solutions. This is due to the fact that each point in the Pareto-optimal solution
surface is optimal in the sense that improvement in one objective function leads to degradation in at least one
of the remaining objective functions. Since none of the solutions in the Pareto-optimal set is absolutely better
than any other, any one of them is an acceptable solution, which leads to a set of non-dominated optimal
solutions. Since classical optimization methods work with a single solution in each iteration, they are required
to be applied repeatedly, hopefully finding one distinct Pareto-optimal solution each time. On the other hand,
genetic algorithm [19] can work with a population of multiple points and can capture a set of Pareto-optimal
solutions through a single run of genetic algorithm. This aspect makes genetic algorithm well-suited to solve
multi-objective optimization problem for finding multiple Pareto-optimal solutions while saving significant
computational time. Accordingly, a number of different multi-objective genetic algorithm implementations
[16,17,20-28] have been presented so far. Of particular interest among these is a fast elitist non-dominated
sorting genetic algorithm [22] in this study, which is an improved version of non-dominated sorting genetic
algorithm [21] and often called non-dominated sorting genetic algorithm-II.

Fig. 2 illustrates the procedures of the non-dominated sorting genetic algorithm-II technique (for more
details of the algorithm, see [22,29]). The non-dominated sorting genetic algorithm-II first generates
a population consisting of N “individuals” which are randomly distributed in a solution space as shown in
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Fig. 2. Schematic representation of non-dominated sorting genetic algorithm-II (NSGA-II): (a) random generation of N chromosomes in
solution space; (b) rank sorting of N individuals in objective space; (c) evaluation of the crowding distance; (d) fitness assignment based on
the rank and the crowding distance; (e) elitism; and (f) evolution toward global Pareto front. ®: Solutions with rank 1; A: solutions with
rank 2; and B: solutions with rank 3. /7*: maximum distance along with j-th objective function; dﬁ(: distance between two solutions
adjacent to i-th individual along with the k-th objective function; S: a set of solutions with the same rank and larger crowding distance;
Sp: a set of solutions with the same rank and smaller crowding distance; O: newly generated solutions; and S¢: a set of new solutions with
rank 1 after comparing newly generated solutions with previous rank 1 solutions.

Fig. 2(a). Each individual corresponds to a set of the design variables and is expressed in a form of
“chromosome”. In this study, the dynamic properties of bi-tuned mass dampers such as natural frequencies w;
and damping ratios {; (j = 1,2) are encoded in sequence into one chromosome. The generated population of
size N is used to evaluate the objective functions in Eq. (9) using Egs. (7) and (8).

Based on the objective function values, non-dominated sorting genetic algorithm-II ranks the N individuals
using the “non-domination” concept. The non-domination concept is as follows; an individual x; is said to
dominate x; if both of the following conditions are satisfied: (1) x; is no worse than x, in all objectives and (2)
X, 1s strictly better than x, in at least one objective. For example, in Fig. 2(b), an individual x; is said to
dominate x; since f(x;) <f(x2) and f,(x1) <f,(x2). Using the above concept, individuals in the population
are classified into groups of different non-domination levels. All the individuals which are not dominated by
any others in the population are assigned to ‘1 or the first rank, and constitute the first front in the objective-
function space. For the remaining individuals, this procedure is applied again to find the individuals of the
second rank. Therefore, the individuals in the second front are dominated by the individuals in the first front
only. This sorting process continues to assign the consecutive ranks to the remaining individuals till all the
population members are classified into their corresponding non-domination levels. Fig. 2(b) illustrates the
ranked individuals in the objective function space. All the individuals in each front share the same fitness value
which is equal to the non-domination level, or the front they belong to. Thus, the individuals in the first front
turn out to be Pareto-optimal solutions.

In addition to the fitness assignment, it is also important to maintain population diversity in the
current non-dominated front. For that purpose, a density-estimation metric, so-called crowding distance, is
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defined by
) ) m di
crowding distance = Z ke, (10)
k=17 k

max

where as shown in Fig. 2(c), ™ is the maximum difference of the k-th objective function between two
outmost individuals in the Pareto front; d;’ is the distance between two individuals adjacent to i-th individual
along with k-th objective; m is the number of the objective functions of interest. Thus, the crowding distance is
calculated for each individual through the summation of the multi-dimensional distances between two
adjacent individuals along the multi-objective space. Each of the multi-dimensional distances is normalized by
the maximum distance in each objective. This metric serves as an estimate of the density of solutions
surrounding a particular solution in the front.

Once the individuals are ranked and their crowding distances are assigned, the binary tournament selection
is operated based on the fitness value and crowding distance. non-dominated sorting genetic algorithm-II at
first selects parents with the lowest rank from the current-generation population. If the two individuals belong
to the same front, their crowding distances are compared and the individual with larger crowding distance is
selected as a parent. As shown in Fig. 2(d), the solution set S is selected as a parent with higher possibility
than the solution set Sz because both solution sets have the same rank but S, has larger crowding distance
than Sp. Due to this selection process, the optimal solutions obtained by non-dominated sorting genetic
algorithm-II are uniformly distributed along with the current non-dominated front. The selected parents
generate the corresponding offsprings through the crossover and mutation operators [19]. As shown in
Fig. 2(e), the newly generated offspring population is combined with the current generation population, and
an elitism process is applied to the combined population in order to preserve the best solutions, which is
operated by two criteria, i.e., the ranks and crowding distances of the individuals. The best solutions of the
current generation constitute the individuals of the next generation. Then, all the above processes such as the
binary tournament selection, generation of offspring, crossover and mutation operators are iterated up to
the specified maximum number of generation. Finally, as shown in Fig. 2(f), the non-dominated sorting
genetic algorithm-I1 guides multiple individuals towards a global Pareto front, while maintaining the diversity
of the solutions along the Pareto front in the multi-objective space, which herein correspond to a set of
solutions with smaller values in both sides of nominal and robust performances.

4. Development of optimal design formula for bi-tuned mass dampers

As already mentioned in Introduction, the mass ratio of the bi-tuned mass dampers affects the control
performance. Therefore, the proposed optimization approach is repeated while varying the mass ratio of
the bi-tuned mass dampers. Accordingly, a total of seven different mass ratios of the bi-tuned mass dampers,
{0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 10.0 percent} are considered to cover the entire range of practical applications,
0.5-10 percent [11]. When evaluating the robust performance measure, the stiffness of the primary structure is
varied from 85 to 115 percent of the nominal value. During optimization by non-dominated sorting genetic
algorithm-II, a total of 100 chromosomes are generated each time and the generations are repeated 5000 times.
Then, the optimal frequencies and damping ratios of bi-tuned mass dampers, w; and {; (j = 1,2) are explored in
a range of 60—110 percent of the first modal frequency and 2-20 percent of critical damping, respectively.

Fig. 3 illustrates the optimization results of a bi-tuned mass dampers in the space of the two objective
functions for the seven mass ratios considered. It displays seven different Pareto-optimal fronts, each of which
consists of 100 Pareto-optimal solutions for a given mass ratio. In each Pareto front, the obtained Pareto-
optimal solutions are well distributed, and they indicate an inversely proportional relationship between the
nominal and robust performance indices. Note that smaller values of the two indices indicate the greater
reduction on the structural responses under the original and perturbed conditions, respectively. Thus, all the
obtained Pareto-optimal solutions are optimal in the sense that an increase in the nominal performance
measure leads to a decrease in the robust performance measure. It is noteworthy that each Pareto front has a
bifurcation point, as indicated by several marker points in Fig. 3. Since the robust performance can be greatly
improved up to the bifurcation point without a significant loss of the nominal performance, we can choose this
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Fig. 3. Pareto optimal solutions (bi-tuned mass dampers—bi-TMD) and Den Hartog optimal solutions (single-tuned mass damper—
STMD) for selected mass ratios. Each marker denotes the optimal solution of single-tuned mass damper by Den Hartog formula: O:
uﬁEMD, i.e., u = 0.5 percent (single-tuned mass damper); [J: 4 = 1.0 percent (single-tuned mass damper); ¢: p = 2.0 percent (single-tuned
mass damper); V: u = 3.0 percent (single-tuned mass damper); A: i = 4.0 percent (single-tuned mass damper); <!: 4 = 5.0 percent (single-

tuned mass damper); and >: u$IMP, ie., = 10.0 percent (single-tuned mass damper). Dotted lines represent a set of Pareto optimal

solutions of bi-tuned mass dampers; uds™P 1 = 0.5 percent (bi-tuned mass dampers) and 8 I™P 1 =10.0 percent (bi-tuned mass

dampers).

point among the Pareto solution set as a reasonable optimal design solution that achieves both nominal and
robust performances. The proposed multi-objective optimization approach enabled us to identify this optimal
design point in an efficient manner. For comparison of optimal performances, the single-tuned mass damper
systems with the same mass ratios designed by Den Hartog formula are also presented by seven different
marker points. Here, the same mass ratio means that the mass ratio of single-tuned mass damper is equal to
the sum of the two mass ratios of the bi-tuned mass dampers. All the bifurcation points show a great
enhancement in robust performance, yet their nominal performance indices remain still smaller than those of
the single-tuned mass damper by Den Hartog formula except for a mass ratio of 0.5 percent where the nominal
performance index of bi-tuned mass dampers is slightly larger than that of single-tuned mass damper. Even if
the bifurcation point for the case of 0.5 percent mass ratio shows slightly poorer nominal performance, it does
not necessarily mean that the bi-tuned mass dampers system with the small mass ratio is always poorer than
the single-tuned mass damper in the nominal performance. As seen in Fig. 3, there still exist many Pareto
solutions which are better than single-tuned mass damper in terms of both nominal and robust performances
even when the mass ratio is very small. It is also observed that the difference between the nominal
performances of the single-tuned mass damper and bi-tuned mass dampers systems is insignificant when the
mass ratio is very small. With the minor sacrifice of the nominal performance, the robust performance of the
bi-tuned mass dampers can be greatly improved. Therefore, we decided to use the bifurcation points for
developing optimal design formulas of the bi-tuned mass dampers. Therefore, the optimal solutions
corresponding to the bifurcation points can guarantee improved robust performance while maintaining
the nominal performance similar to or better than that of the single-tuned mass damper designed by
Den Hartog formula.

Due to the randomness in generating searching points in genetic algorithm, there exist some variations in
the obtained optimal solutions in general even for the same parameters given. Therefore, we select five Pareto-
optimal solutions around each of the seven bifurcation points and use them to derive a design formula. Fig. 4
illustrates the optimal parameters for a total of 5 x 7 = 35 bi-tuned mass dampers systems, which are denoted
by markers ‘[J” and $’. Note that dotted lines with a marker ‘O’ are the optimal parameters of single-tuned
mass damper by Den Hartog design formula. It is observed in Fig. 4 that one of the optimal frequency ratios
of the bi-tuned mass dampers is distributed close to 1.0, which means its frequency is tuned near to the first
modal frequency of the primary structure. Also note that the optimal frequency ratios decrease and the
corresponding optimal damping ratios increase as the mass ratio increases. These parameters are used in a
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Fig. 4. Optimal parameters of STMD (single-tuned mass damper) by Den Hartog formula (O) and of bi-TMD (bi-tuned mass dampers)
by NSGA-II (non-dominated sorting genetic algorithm-II) (OJ): (a) optimal frequency ratio and (b) optimal damping ratio.

nonlinear curve-fitting scheme [30] to derive closed-form expressions of the optimal frequencies and damping
ratios of a bi-tuned mass dampers for given mass ratio u.

In order to make simple and easy-to-use design formula for a bi-tuned mass dampers, we adopt the
following form similar to Den Hartog design formula [2] for frequency ratio and damping ratio:

1
foptzms (11a)
e+ xp\
é’opt— <X+5 X,“) . (llb)

As for the frequency ratio f,, Eq. (11a) gives a close approximation to the optimal frequency values given in
Fig. 4(a). On the other hand, the coefficient § in Eq. (11b) approaches to zero when Eq. (11b) is fitted to the
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Table 1
Design formulas of single- and bi-tuned mass dampers.

Design formulas Frequency ratio Damping ratio
Den Hartog 1 3u
l+p 8(1 + w)
This study
First bi-tuned mass dampers 1 0.2623 x p03386
1.0737 4 2.2593 -
Second bi-tuned mass dampers 1 0.4054 x 04600

0.9895 + 0.4418 -

optimal damping ratios in Fig. 4(b). Thus, the following simpler form is used to fit the curve in Fig. 4(b):
Cope = (& + ¢ x )" (12)

Again, the coefficient ¢ turns out to be close to zero, so it is dropped from Eq. (12). Finally, the closed-form
expressions for the optimal frequency ratio and damping ratio of bi-tuned mass dampers are given in Table 1.
The optimal parameters for the derived formula are depicted as solid lines in Fig. 4, which has a maximum
relative error of 0.43 percent in frequency ratio and 2.78 percent in damping ratio. The magnitude of error for
optimal damping ratio is relatively larger than that for optimal frequency ratio, which is caused by using a
simple form of design formula and neglecting the corresponding insignificant error.

In order to verify the accuracy and effectiveness of the proposed design formula, the nominal and robust
performances of the single-degree-of-freedom primary structure with single-tuned mass damper or bi-tuned
mass dampers subject to harmonic excitations are evaluated using the optimal design formulas, i.e., Den
Hartog design formula and the ones proposed in this study. Fig. 5 depicts the simulated results of the two
damper systems. The horizontal axis corresponds to the mass ratio of single-/bi-tuned mass dampers. For
bi-tuned mass dampers, the mass ratio is given in terms of the total mass of the two dampers. The vertical axis
presents the nominal and robust performance indices (Jy, Jg) of the damped systems divided by those of the
undamped system, i.e., the original or perturbed structure with no damper which are denoted by J,° and Jz°.
On the whole, the performances of both single- and bi-tuned mass dampers are enhanced as the mass ratios of
the dampers are increased, as observed also in Fig. 3. When the mass ratio is smaller than 1 percent, the
nominal performance of bi-tuned mass dampers is slightly poorer than that of single-tuned mass damper
whereas the robust performance of bi-tuned mass dampers remains better than single-tuned mass damper. As
already mentioned before, this is due to the fact that the bifurcation points in Fig. 3 are selected for the
derivation of the optimal design formula. One can further improve the design formula for bi-tuned mass
dampers system such that it guarantees improvement over single-tuned mass damper system in terms of both
nominal and robust performances by choosing Pareto solutions other than bifurcation points. However, this
improvement is minimal and limited to the cases of small mass ratios. For a range of more than 1 percent of
mass ratio, the bi-tuned mass dampers further improve the nominal performance over single-tuned mass
damper while maintaining absolutely better robustness than single-tuned mass damper. Thus, these
comparative results demonstrate that the proposed design formula can further improve the robust
performance of the damped structural system while maintaining at least similar level of nominal performance
to the single-tuned mass damper system. Moreover, the Pareto-optimal solutions selected as reasonable
solutions in Fig. 3 are also presented for the purpose of verifying the accuracy of the proposed design formula.
The difference between the performance indices of the optimal bi-tuned mass dampers systems obtained by
non-dominated sorting genetic algorithm-II and those by the simple optimal design formula in Table 1 are
insignificant. This confirms that the proposed simple design formula guarantees the optimal performance of
bi-tuned mass dampers identified by the proposed multi-objective optimization approach accounting for both
original and perturbed conditions.

The perturbation of frequency and damping ratio of the primary structure influences the optimal
parameters of the bi-tuned mass dampers. In the proposed design approach, the effect of the frequency
perturbation is incorporated into the robust performance index. However, the variation of the damping ratio
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Fig. 5. Performance evaluation of STMD (single-tuned mass damper) and bi-TMD (bi-tuned mass dampers) with respect to mass ratio:
(a) nominal performance and (b) robust performance. ---: Single-tuned mass damper by Den Hartog formula; —: bi-tuned mass dampers
by proposed formula; and O: bi-tuned mass dampers by NSGA-II (non-dominated sorting genetic algorithm-II).

of the primary structure is not considered. Since the damping ratio of the primary structure is also uncertain,
its effect on the nominal and robust performances of the bi-tuned mass dampers needs to be examined in order
to verify the applicability of the proposed design formula. Thus, the nominal and robust performances of the
damper-controlled primary structure with different damping ratios are evaluated where the single-tuned mass
damper is designed by Den Hartog design formula and the bi-tuned mass dampers are designed by the
formulas proposed in this study. Fig. 6 depicts the simulated results of the two damper systems when
the damping ratios of the primary structure are varied from 0.5 to 6 percent. In order to demonstrate the
suitability of the proposed design formula for illustration purpose, the ratios of the total mass of single- or
bi-tuned mass dampers to that of the primary structure are chosen as 1 and 3 percent. As for the single- and
bi-tuned mass dampers with 1 percent mass ratio, their nominal performances are almost similar to each other.
In contrast, the robust performance of the bi-tuned mass dampers is significantly better than that of the single-
tuned mass damper, especially when the damping ratio of the primary structure is low. Especially when the
damping ratio of the primary structure is 0.5 percent, the ratio of the robust performance measure of the
single-tuned mass damper system to the undamped one exceeds 1.0. This indicates that the response controlled
by the single-tuned mass damper is larger than the uncontrolled response or the response of the building with
no dampers. However, the ratio of the robust performance measure of the bi-tuned mass dampers remains
smaller than 1.0 even for the damping ratio 0.5 percent. This result demonstrates that the performance of the
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Fig. 6. Performance evaluation of single-tuned mass damper and bi-tuned mass dampers with respect to damping ratio of the primary
structure: (a) nominal performance and (b) robust performance. ®: Single-tuned mass damper with 1 percent mass ratio by Den Hartog
formula; [OJ: bi-tuned mass dampers with 1 percent mass ratio by proposed formula; O: single-tuned mass damper with 3 percent mass
ratio by Den Hartog formula; ¢: bi-tuned mass dampers with 3 percent mass ratio by proposed formula.

single-tuned mass damper may be very sensitive to the variation of the damping ratio of the primary structure
while the bi-tuned mass dampers shows more robustness against the off-tuning of the damping ratio. As the
mass ratio of the single- or bi-tuned mass dampers is increased up to 3.0 percent, similar tendency is observed
for both nominal and robust performances. The robust performance is greatly improved again by the bi-tuned
mass dampers, while the nominal performances of the single- and bi-tuned mass dampers are almost similar to
each other. It is noteworthy that the overall difference between the performance measures of the single- and
bi-tuned mass dampers systems is decreased as the damping ratio of the primary structure is increased. This is
because, as the damping ratio of the primary structure is increased, its role in controlling the structural
responses becomes dominant and the damper system becomes less important. It is concluded that
the proposed design formula can help achieve robust performance especially for the structures with small
damping ratios.

5. Performance evaluation of optimal bi-tuned mass dampers for multi-degree-of-freedom structures

To confirm the applicability and the optimal performance of the proposed design approach in practical
situations, the proposed design formula is applied to a primary structure with full-order models (i.e., not an
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Fig. 7. Example 20-storey building with bi-TMD (bi-tuned mass dampers).

single-degree-of-freedom model representing the first mode only) of two 20-storey buildings that have different
modal frequencies. In order to account for the stochastic nature of ground motions and its significant impact
on the structural responses, we estimate the peak response of the damped structure by stochastic dynamic
analysis. The two buildings have different inter-storey stiffness, 5600 and 22,400 MN/m, respectively. The
mass of each floor is 800 ton for both buildings. A classical damping matrix with 2 percent of the critical
damping for each mode is assumed for both buildings. Thus, the first modal frequencies of the two buildings
turn out to be 0.51 Hz (building “A’’) and 1.02 Hz (building “B’’), respectively. In order to demonstrate the
good performance of the proposed design formula for a practical range of mass ratio, the total mass ratios of
the bi-tuned mass dampers for the two buildings are chosen as 1 and 3 percent of the first modal mass of the
corresponding structures. For the purpose of comparison, single-tuned mass damper designed by Den Hartog
formula is also considered. All the damper systems are installed on the top floor of the buildings to suppress
the seismic responses of the building, as shown in Fig. 7. The random seismic excitation is modeled as a zero-
mean stationary, filtered white-noise process defined by the following Kanai—Tajimi power spectral density
(PSD) function [31]

4 2.9 9
wy+4égwgw

(02 — ?)* + 4 w20? )
g 9%

Py 5, () = (13)

where w, is the predominant frequency, {, is the parameter controlling the bandwidth, and @, is the parameter
for the seismic intensity, respectively.

Of our particular interest is the peak value of the inter-storey displacement over the duration of a seismic
event. Therefore, we find the peak value using the following relation [32] between the mean of the peak
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response and the standard deviation of the process:

Ky, =p-0y, (14)
where oy is the standard deviation of the output response y(¢) (in the sense of ensemble average); Y is the peak
response of the absolute value of the output response y(¢) in a time period (0,7]; iy, is the mean of Y, and p is
the peak factor. The peak factor and the standard deviation are obtained by linear random vibration analysis

of the structure with bi- or single-tuned mass damper subject to the Kanai—Tajimi PSD model.
The m-th order spectral moment of a stochastic process y(¢) is defined as

)Lm:/ 0" Gy(w)dow, (15)
0

where G,(w) is the one-sided PSD of the process y(f). The variance of the output response is calculated by a
frequency-domain random vibration analysis, i.e.,

G=t= [ Gdo= [ Gl do. (16)
0 0

where G,(w) = 2®; i (w) is the one-sided PSD of the stationary excitation, Hgys(w) is the frequency response
function of the output response of interest. When we are interested in the inter-storey displacement of the
structure, the corresponding output matrices C, and Dy (see Eq. (5)) are

(1 0 0 -~ 0 0 0]
-1 1 0 -~ 0 0 0
0 -1 1 -~ 0 0 0
G=|. . - - = s Dy=].] (17)
oo e 10 0
0 0 0 - -1 1] L0

Der Kiureghian [32] proposed a semi-empirical peak factor p that can take into account the effect of the
bandwidth. For the two-sided thresholds, the peak factor is given as

0.5772

=+/2In(v,1) + —— forv,7>2.1, 18a
p (vet) Ao (18a)
p=1253+4+0.209 x v,t forv,1<2.1, (18b)
where 7 is the duration of the stationary excitation, and v, is given as
ve =20v,(0) for 0<d<0.1, (19a)
ve = (1.630°% — 0.38) x v,(0) for 0.1 <<0.69, (19b)
ve =vy(0) for0.69<d<1, (19¢)

where 6 and v,({) represent the bandwidth parameter and the two-sided mean crossing rate of the process over
the threshold {, respectively. These are given in terms of the spectral moments from Eq. (15) as

2
Bandwidth of the process : 6 = — L, (20)
Ao2a
1 [ 2
Mean crossing rates : v,(¢) = — Q exp (— é—) (21)
T\ Ao 2/1()

Thus, the mean peak value of the maximum inter-storey displacement of the 20-storey building structure
with single- or bi-tuned mass dampers system can be estimated from Egs. (14), (16) and (18). In order to
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Fig. 8. Normalized peak responses of single-tuned mass damper and bi-tuned mass dampers systems for building A with the first modal
frequency of 0.51 Hz with respect to variations in: (a) dominant frequency and (b) bandwidth parameter of the ground motions: e:
nominal performance of single-tuned mass damper by Den Hartog formula; O: nominal performance of bi-tuned mass dampers by
proposed formula; O: robust performance of single-tuned mass damper by Den Hartog formula; and ¢ : robust performance of bi-tuned
mass dampers by proposed formula.

evaluate the robust performances of the two damper systems, the inter-storey stiffness values of the building
are varied from 85 to 115 percent of the nominal value. Fig. 8 presents the results for building A with the first
modal frequency of 0.51 Hz. The performances of the optimal single- and bi-tuned mass dampers systems are
compared for wide ranges of the Kanai—Tajimi parameter values in order to examine the performance of the
optimal design for uncertain ground motion characteristics. Each of the peak responses of the two damper
systems is normalized by the peak response of the original system with no damper in original condition
(“nominal performance’) and in perturbed condition (“‘robust performance’), respectively. Fig. 8(a) shows
the normalized responses of the damped building for a range of the dominant frequency of the ground motion,
o, from 1.5 to 20rad/s ({, = 0.6 and &, = 0.0871 m?/s®). Since the vertical axis represents the ratio of the peak
response of the damped system to that of the structure with no damper, the smaller value indicates more
reduction in the peak response of the structure. Both systems show larger reduction ratio around the first
modal frequency of the structural system, i.e., 3.20 rad/s. The improvement by the bi-tuned mass dampers is
not significant in terms of nominal performance, whereas the bi-tuned mass dampers system shows a
significant improvement in robust performance. Therefore, the bi-tuned mass dampers still remain effective in
terms of nominal performance and further improve the robust performance. The effectiveness and robustness
of the optimal bi-tuned mass dampers system hold the same for a range of bandwidth parameter {, from 0.1 to
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Fig. 9. Normalized peak responses of single-tuned mass damper and bi-tuned mass dampers systems for building B with the first modal
frequency of 1.02 Hz with respect to variations in: (a) dominant frequency and (b) bandwidth parameter of the ground motions: e:
nominal performance of single-tuned mass damper by Den Hartog formula; [J: nominal performance of bi-tuned mass dampers by
proposed formula; O: robust performance of single-tuned mass damper by Den Hartog formula; and ¢: robust performance of bi-tuned
mass dampers by proposed formula.

0.9. (w, = Snrad/s and @, = 0.0871 m?/s°). Fig. 8(b) plots the normalized responses versus the bandwidth
parameter of the ground acceleration, {,. The comparative results demonstrate that the bi-tuned mass
dampers is superior in terms of the robust performances to the single-tuned mass damper system while keeping
a similar level of nominal performance especially when the ground motion is relatively wide-band process. The
effectiveness of the proposed design formula is confirmed for the example of building B for which the first
modal frequency is 1.02 Hz (Fig. 9). In Fig. 9(a), the larger reduction appears again around the first model
frequency of the building. The bi-tuned mass dampers system shows slightly improved nominal performance
over single-tuned mass damper system while the robust performance of bi-tuned mass dampers still remains
better than single-tuned mass damper. Similar results are also observed for the bandwidth of the ground
motions as shown in Fig. 9(b).

6. Conclusion
In the study reported in this paper a closed-form, easy-to-use design formula for optimal performance of

bi-tuned mass dampers system both in original and perturbed conditions was developed using non-dominated
sorting genetic algorithm. The optimal parameters are identified using a multi-objective optimization and
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closed-formula is found by a nonlinear curve-fitting technique. In this study, the performance of the damped
structural system is described by two measures, i.e., nominal and robust performance indices. The nominal
performance index represents the effectiveness of the bi-tuned mass dampers when it is precisely tuned to the
first modal frequency of the target structure, and the robust performance index stands for the robustness of
the bi-tuned mass dampers against the frequency mis-tunings that arise from changes in dynamic properties of
the target structure. In order to deal with the simultancous optimization of the two performances, we adopt
genetic algorithm-based multi-objective optimization method where the two competitive performance indices
are used as a vector form of objective functions. This proposed approach systematically explores a set of
Pareto-optimal solutions which are non-inferior or non-superior to each other in terms of the two objective
functions. The Parcto-optimal surface in the objective function space shows the existence of a special
bifurcation point which guarantees nominal performance with at least similar level to single-tuned mass
damper and improves robust performance. The multi-objective optimization is repeated while varying the
mass ratio of the bi-tuned mass dampers and an explicit design formula for the optimal bi-tuned mass dampers
is derived using a nonlinear curve-fitting technique. The optimal tuning frequencies and damping ratios of the
bi-tuned mass dampers are then expressed in terms of total mass ratio of the bi-tuned mass dampers. The
accuracy of the proposed simple formula is verified through comparison between the performance indices by
the formula and those obtained originally by multi-objective optimization. In order to demonstrate the
applicability of the proposed design formula of bi-tuned mass dampers and evaluate their performances,
illustrative examples are presented for optimal design problems of single- and bi-tuned mass dampers using
full-order models of building structures. For the purpose of comparison, single-tuned mass damper systems
designed by Den Hartog design formula are considered as well. Then, the nominal and robust performances of
the optimal designs are examined by stochastic dynamic analysis for a wide range of uncertain characteristics
of ground motions. The comparative results demonstrate that the proposed design formula can provide a
bi-tuned mass dampers system that is both effective and robust in reducing the response of building structures
under seismic excitations despite the uncertain characteristics of the stochastic ground motions and potential
mis-tuning.
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